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Motivation

● Deep generative models have shown immense potential in generating unseen data that has properties of real data. 
● These models learn complex data-generating distributions starting from a smaller set of latent dimensions. 
● Generative models have encountered great skepticism in scientific domains due to the disconnection between 

generative latent vectors and scientifically relevant quantities. 
● In this study1, we integrate three types of machine learning models to generate solar magnetic patches in a 

physically interpretable manner and use those as query to find matching patches in real observations. (see 
Figure 1)

● We use the magnetic field measurements from Space-weather HMI Active Region Patches (SHARPs) to train a 
Generative Adversarial Network (GAN2). (see Figure 2)

Supervised Learning on Generative Latent Space

● We calculate physical parameters from the generated images – Total Unsigned Field 
(TUF), Total Positive/Negative Field (TPF/TNF), polarity separation (PSEP) etc.

● We use supervised learning to learn decision boundaries (in red) that separate 
higher and lower values of physical parameters (see Figures 3, 4, 7)

● Moving along direction normal to those decision boundaries makes smooth changes 
in those physical properties of the generated images1

Self-Supervised Learning to find Nearest 
Observation

● We train a Self-Supervised Learning (SSL) model 
called SimSiam3 on SHARP data to learn 
augmentation invariant latent representation

● We build a Look Up Table (LUT) that maps  SHARPs 
to SSL-derived latent vectors. (see Figure 1)

● We use Generated Image as Query and find 
nearest observed SHARP using the SSL latent 
space. (see Figures 1, 5)

● The physical properties of Generated Query and 
retrieved Real Match show high statistically significant 
correlation (2D histograms on Figure 5).

● Generated Queries match the physical domains of real 
images in terms of the derived physical properties. 
(marginal histograms on Figure 5). 
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Scan to access
“Sun Generator”

https://sungenerator-subhamoy.
streamlit.app/ 

This App that allows user to 
interact with latent space for 

tweaking solar magnetic 
patch generation
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Conclusion

● We demonstrated that a Deep Generative model can be harnessed to generate scientifically meaningful queries to find matches in scientific datasets.
● This image generation can be tweaked along directions that reflect changes in any set of chosen physical quantities.
● We showed that the generated images can also be used as a query to the SSL-derived latent space to retrieve matches from solar images. These retrieved regions matched the query 

both visually and quantitatively. 
● This approach thus elevates generative models from a means-to-generate-synthetic data to a novel tool for the efficient mining of real scientific data.
● Even though we demonstrated this approach in a specific domain of solar astronomy, it can be easily adapted to any other field of astronomy dealing with big datasets of any modality 

and complexity.

Figure 6

SEARCH
● A community driven Self-Supervised Learning 

effort to build a reverse image search application 
on SDO Data

● SEARCH = SDO Exploration And Research 
Community for Heliophysics.

● Build SDO/AIA data downloader + AI/ML ready 
packager

● Trained SSL models on SDO/AIA mutli-wavelength 
images

● Built reverse image-search tool making use of SSL 
latent space (Figure 6)

Potential Application on CME Data Mining
● Connecting CME properties to Generative Latent space will 

allow efficient exploration of CMEs
● Latent vectors capture inherent structure of CME images (Figure 7)
● Generative models allow continuous changes in CME images by 

changing the input latent vectors
● Mapping latent vectors to CME properties allow generation of new 

CME images and mine rare cases that can be hidden in a large 
dataset
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