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Background
1/f noise, otherwise called “flicker noise”, refers to a region of thepower spectrum where the spectral density S(f ) inversely varieswith frequency f . This spectrum is unique because the integratedpower per octave is independent of frequency. Mathematically,the integration ∫

S(f )df ∼
∫
df /f ∼ log f2/f1 relies solely on theratio between the upper and lower integration bounds, f2/f1.

Signals with 1/f spectra are found and studied in numerous sys-tems, including semiconductors, music, and human heartbeats.They have also been observed in interplanetary magnetic and den-sity fields since the 1908s1,2. Understanding the origin of the in-terplanetary 1/f spectra was counted among the scientific motiva-tions for design of the Parker Solar probe mission3.
Observations and theoretical issues
1/f spectra typically extend over several orders of magnitude infrequency near 1 au, and transition to steeper f −5/3 or f −3/2 powerlaws at higher frequencies, reminiscent of the classical homoge-neous, isotropic inertial range turbulence. The “break frequency”is observed to decrease with increasing heliocentric distance.

Left: Matthaeus & Goldstein 1986, Fig. 1. Right: Davis et al. 2023, Fig. 3. In long data
records, 1/f is seen between 2× 10−6 and ∼ 10−4Hz.
The origin of interplanetary 1/f noise is a topic of fundamental de-bate: does this signal arise from local dynamics, such as linear insta-bility or modifications to the principles underlying a Kolmogorov-like cascade4,5, or from non-local statistical properties possibly nearthe solar corona, which can be shown mathematically to generate
1/f spectra?

Superposition principle forgeneration of 1/f noise
A superposition of purely random processes (thosewith e−t/τc autocorrelations) with a scale-invariantcorrelation time distribution ρ(τc) dτc ∝ dτc/τc pro-duces a 1/f spectrum6:
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Superposing datasets with an arbitrary power-lawindex less than -1 also gives rise to 1/f spectrum.
A lognormal distribution with large variance over-laps with a scale-invariant distribution7. Correlationtimes in the solar wind at 1 au follows a lognormaldistribution.

Lognormal distribution naturally arise from multi-plicative processes, which may manifest as succes-sive reconnection events or successive foldings in adynamo2.
“If you have notfound the 1/f spec-trum, it is becauseyou have not waitedlong enough6.”

Scan to see the maths.

Coronal and solar origin (superposition)
•The observed 1/f spectra may come from the superposition ofsignals from uncorrelated magnetic reconnection events in thecorona, whose respective correlation times collectively exhibit alognormal-like distribution8,9,10.
• Inverse cascade systems produce large scale structure and 1/fin time domain, which is also seen in dynamo experiments andspherical MHD simulations11.
•Shell-reducedMHDmodel with Alfvénwaves injected at the baseof the chromosphere shows that reflection supports inverse cas-cade and creates low-frequency 1/f spectra5.
•Azimuthal spectrum of line of sight photospheric magnetic field(from MDI data) shows 1/k spectrum that can become 1/f afterpropagation.
•Dynamo simulations indicate origin of 1/f in solar dynamo12,13.

Local origins
•Nonlinear couplings in expanding wind with WKB ordering cancreate a local self-similar 1/f spectrum4.
•Such mechanism cannot produce 1/f over observed range due tocausality limitations14 - MHD cannot communicate over requiredrange in time of convection to 1 au (see Figure).

•Other proposed models for generating 1/f might explain obser-vations near 10−3 to 10−4Hz, but for essentially the same causalitylimitation cannot explain observations down to 10−6 Hz15,16.

Observability by PUNCH
The implied sizes of the structures associated with the 1/f signalcorrespond to the range of scales to which PUNCH is sensitive –from a few correlation lengths up to 1 au.Challenge: How can we connect the images to the 1/f structures?(See paper by Pecora+2024)
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