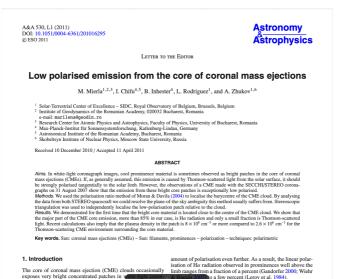
3D reconstruction methods 000000

Discussions 0000

Low polarization emission from the core of a CME


Iulia Chifu

Institute for Astrophysics and Geophysics University of Göttingen

21st of June 2024 5th PUNCH meeting Boulder, Colorado

agraphs. They are interpreted as cool plasma prominence that was embedded inside the strea

(103) to a few percent (Leroy et al. 1984). Dight emission of the solar K-corona originates attering of photospheric light by free electrons.

3D reconstruction methods 000000

Discussions 0000

Corona and Thomson scattering

The solar corona is composed of gas, dust, molecules, and magnetic fields that constantly stream from the Sun's surface.

Components of the solar corona:

- K-corona, scattering on electrons.
- F-corona, scattering on dust particles.
- E-corona, emission lines produced by ions in the corona.
- T-corona, thermal emission of dust particles.

3D reconstruction methods 000000

Discussions 0000

Corona and Thomson scattering

- observation of the polarisation of the solar coronal brightness - among the earliest manifestations of Thomson scattering
- first successful observation Francois Arago, eclipse 1842 (F. Arago gave the first report of the polarisation of coronal light.)
- 1879, These observations were interpreted by Schuster [1879] in terms of Sun light scattered at small particles in the solar corona.
- Schuster derived the ratio of the polarisation in directions tangential and radial to the Sun's centre

THE CORONA OF 8th July 1842 (Arago)

3D reconstruction methods

Discussions 0000

Corona and Thomson scattering

- 1930, Minnaert extended them by taking the solar limb darkening into account, D(r), D(r)-B(r)
- the most known and used eq are the one used and popularised by Billings, 1966

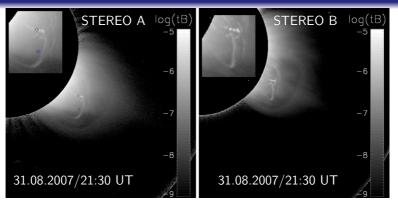
$$\begin{split} I_t &= I_0 \frac{N_e \pi \sigma}{2} [(1-u)C + uD] & \sigma \text{ - Thomson scattering cross section,} \\ I_t - I_r &= I_0 \frac{N_e \pi \sigma}{2} \sin^2 \chi [(1-u)A + uB] & u \text{ - limb darkening coefficient} \\ A &= \cos \Omega \sin^2 \Omega \\ B &= -\frac{1}{8} \left[1 - 3\sin^2 \Omega - \frac{\cos^2 \Omega}{\sin \Omega} (1 + 3\sin^2 \Omega) \ln \frac{1 + \sin \Omega}{\cos \Omega} \right] \\ C &= \frac{4}{3} - \cos \Omega - \frac{\cos^3 \Omega}{3} \\ D &= \frac{1}{8} \left[5 + \sin^2 \Omega - \frac{\cos^2 \Omega}{\sin \Omega} (5 - \sin^2 \Omega) \ln \frac{1 + \sin \Omega}{\cos \Omega} \right]. \end{split}$$

Observer

The CME event

- Date: 31 August 2007
- Instrument: COR1/STEREO
- COR1 FOV [1.4-4] R_☉

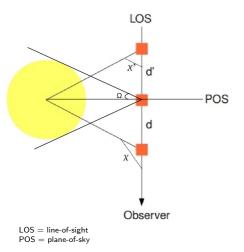
- separation angle (STA,STB) = 28°
- Source: an eruptive prominence



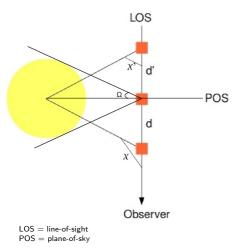
Introduction 0000 Observations

3D reconstruction methods

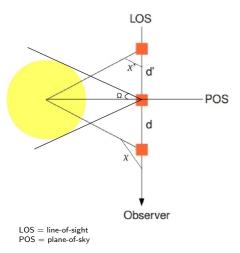
Discussions 0000


Observations

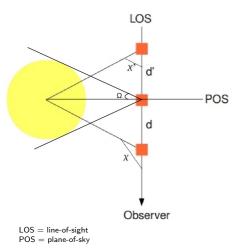
- obs $\Delta\lambda=22$ nm, H $_{lpha}$ (656 nm) centered
- COR1 linear polarizer @ 0,120,240 deg
- $p_B = \frac{4}{3}\sqrt{[(I_0 + I_{120} + I_{240})^2 3(I_0I_{120} + I_0I_{240} + I_{120}I_{240})]}$
- $t_B = \frac{2}{3}(I_0 + I_{120} + I_{240})$


- Calibration
- Median filter
- background removal for pB and tB

3D reconstruction methods •00000 Discussions 0000


- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0,± 60 deg. ⇒ polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

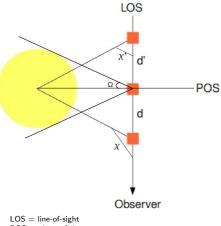
3D reconstruction methods •00000 Discussions 0000


- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0,± 60 deg. ⇒ polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

3D reconstruction methods •00000 Discussions 0000

- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0,± 60 deg. ⇒ polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

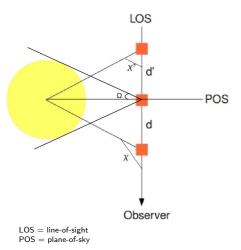
3D reconstruction methods •00000 Discussions 0000



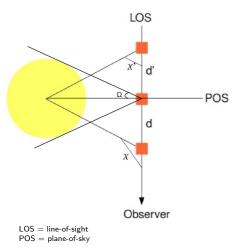
- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0, \pm 60 deg. \Rightarrow polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

3D reconstruction methods 00000

Discussions

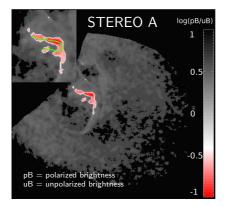

Polarization Ratio (PR) method

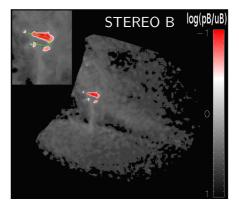
POS = plane-of-skv


- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at $0,\pm$ 60 deg. \Rightarrow polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ

3D reconstruction methods •00000 Discussions 0000

- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0,± 60 deg. ⇒ polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

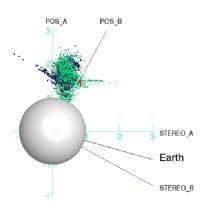

3D reconstruction methods •00000 Discussions 0000



- Based on the polarization properties of the Thomson scattering
- Developed by Moran and Davila, 2004
- suitable for 3D reconstruction of CME cloud
- COR takes polarized images at 0,± 60 deg. ⇒ polarized, unpolarized and total brightness image
- The degree of polarization is a function of the scattering angle χ
- χ depends on the distance d from POS

Introduction 0000 Observations

3D reconstruction methods ○●○○○○ Discussions 0000

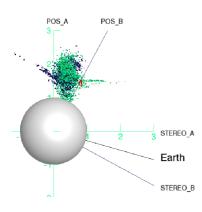


- \bullet Polarization ratio pB/uB
- Red patch low polarized values

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

Polarization Ratio (PR) method

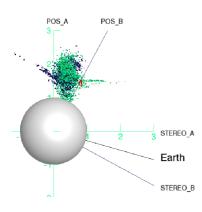


- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns" - low polarization patches
 ⇒ Thomson scattering does not apply
- What is the real location of the CME core?

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

Polarization Ratio (PR) method

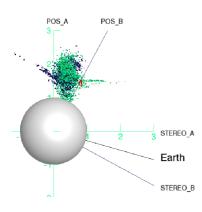


- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns"- low polarization patches
 ⇒ Thomson scattering does not apply
- What is the real location of the CME core?

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

Polarization Ratio (PR) method

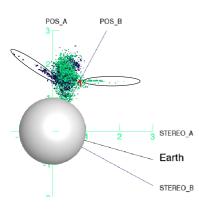


- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns" - low polarization patches
 ⇒ Thomson scattering does not apply
- What is the real location of the CME core?

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

Polarization Ratio (PR) method

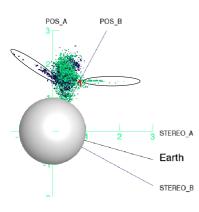


- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns" - low polarization patches
 ⇒ Thomson scattering does not apply
- What is the real location of the CME core?

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

Polarization Ratio (PR) method



- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns"- low polarization patches
 - \Rightarrow Thomson scattering does not apply
- What is the real location of the CME core?

 $_{OOOOO}^{3D}$ reconstruction methods

Discussions 0000

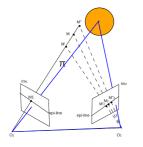
Polarization Ratio (PR) method

- Applying the PR method on images from COR1 A and B \rightarrow 3D position for each pixel
- Green dots: scatterer location derived from COR1 A
- Blue dots: scatterer location derived from COR1 B
- Using two spacecraft ⇒ forward/backward symmetry of Thomson scattering
- The mysterious location of the CME core: "Horns"- low polarization patches
 - \Rightarrow Thomson scattering does not apply
- What is the real location of the CME core?

3D reconstruction methods $\circ \circ \circ \circ \circ \circ \circ \circ$

Discussions 0000

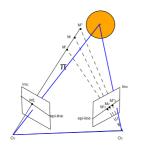
- retrieves the 3D information of curve-like objects
- two and three view directions
- based on the stereoscopic reconstruction technique
- B-spline functions are used in order to obtain smooth curves
- 1. The epipolar geometry
 - stereo base line, angle, plane
 - epipolar plane/line

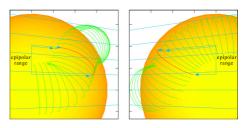

- 2. Identification and matching
 - automatic
 - by visual inspection

3D reconstruction methods $\circ \circ \circ \circ \circ \circ \circ \circ$

Discussions 0000

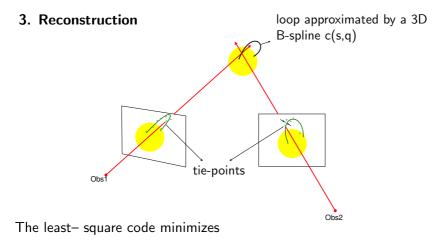
- retrieves the 3D information of curve-like objects
- two and three view directions
- based on the stereoscopic reconstruction technique
- B-spline functions are used in order to obtain smooth curves
- 1. The epipolar geometry
 - stereo base line, angle, plane
 - epipolar plane/line


- 2. Identification and matching
 - automatic
 - by visual inspection


3D reconstruction methods 000000

Discussions 0000

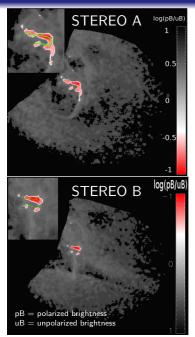
- retrieves the 3D information of curve-like objects
- two and three view directions
- based on the stereoscopic reconstruction technique
- B-spline functions are used in order to obtain smooth curves
- 1. The epipolar geometry
 - stereo base line, angle, plane
 - epipolar plane/line

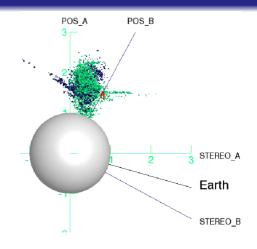


- 2. Identification and matching
 - automatic
 - by visual inspection

3D reconstruction methods $\circ \circ \circ \circ \circ \circ \circ$

Discussions 0000




$$\sum_{\text{images } j} \sum_{\text{tie-points } i} |P_j \cdot \mathbf{c}(s_{i,j}; \mathbf{q}) - \mathbf{x}_{i,j}|^2 + \mu \int |\frac{d^2}{ds^2} \cdot \mathbf{c}(s; \mathbf{q})|^2 ds$$

Introduction 0000 Observations 00 3D reconstruction methods

Discussions 0000

PR and MBSR

 ⇒ Red patch – low polarized values
⇒ The green curve – the projection of the 3D reconstructed curve

Discussions

What is the cause of the horns?

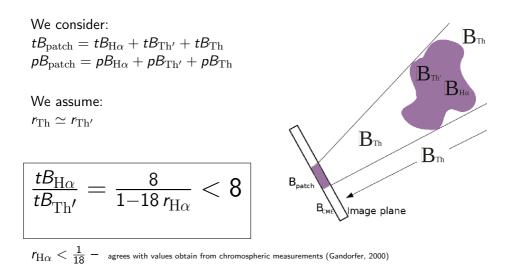
- scattering on the dust particles (Morgan & Habbal, 2007)
- Thomson-scattering from enhanced plasma far away from the POS (Billings, 1966)
- The resonant scattering on H α atoms (Poland & Munro, 1976)

What is the cause of the horns?

- scattering on the dust particles (Morgan & Habbal, 2007)
- Thomson-scattering from enhanced plasma far away from the POS (Billings, 1966)
- The resonant scattering on H α atoms (Poland & Munro, 1976)

From observations:

$$\Rightarrow r = \frac{pB}{tB} = \frac{\frac{pB}{uB}}{1 + \frac{pB}{uB}} \simeq \begin{cases} 0.5 & \text{for } r_{\text{Th}} \\ 0.1 & \text{for } r_{\text{patch}} \end{cases}$$


1

 $\Rightarrow tB_{\mathrm{patch}} \simeq 10 \ tB_{Th}$

3D reconstruction methods 000000

Discussions

What is the cause of the horns?

Summary and Conclusions

- We applied the polarization ratio method to a CME on 31.08.2007
- From the 3D reconstruction of the CME cloud, we identify unusual locations of the CME core
- We applied stereoscopy to identify the 3D real location of the CME core
- Based on the analysis, the conclusion is that the major part of the CME core emission is H_{α} radiation (85%) and only a small fraction is Thomson-scattered light

3D reconstruction methods

Discussions

Thank you!

