

Concise summary

## NASA mission tech specs

| Parameter          | Value                                        | Note                                   |  |
|--------------------|----------------------------------------------|----------------------------------------|--|
| Form factor        | 6U CubeSat                                   | ~Shoebox size                          |  |
| Launch date        | June/July 2025                               | Space X Falcon 9<br>Transporter-14     |  |
| Prime mission      | 8 months                                     | To extend as long as able              |  |
| Orbit              | Altitude ≤ ~550 km<br>inclination 98°        | sun-sync                               |  |
| FOV                | <b>±5.34 R</b> ₀ x <b>±4 R</b> ₀             | That's wide!<br>±1.5 is typical        |  |
| Bandpass           | 170-200 Å                                    | Wider than typical                     |  |
| Dynamic range      | <b>2x10</b> <sup>6</sup>                     | SDO/AIA's is 10 <sup>4</sup> (typical) |  |
| Spatial resolution | 20 arcsec                                    | Similar to coronagraphs                |  |
| Exposure times     | 0.035 sec (on disk)<br>15 seconds (off disk) | Configurable on orbit                  |  |
| Cadence            | 1 minute                                     | Nominally; can do 15 sec               |  |

solar panels aperture door entrance filter Dual-SPS telescope batteries focal plane filter detector X-band transmitter UHF transceiver camera electronics radiator star tracker 2 XACT ADCS CDH, EPS, interface X-band antenna UHF antennas



 $(\vec{V} \text{ changes - no axes are tied to ram})$ 

2/16

# SUNCET? Science motivation







## Bulk of CME acceleration occurs in the "middle" corona (e.g., Bein et al., 2011; D'Huys et al., 2014)









- Result of solar system's most energetic process, up to  $10^{25}$  J (asteroid that killed the dinosaurs  $\simeq 10^{23}$  J)
- How are they triggered and accelerated?
  - $\ge 26 review$  papers on this topic in last 2 decades,  $\geq$ 75 deep dive papers
  - We have lots of competing models (e.g., torus) instability, helical kink, breakout, slip-running, ...) but lack the observations to discriminate between them
    - Each model can produce predicted kinematic profiles for CMEs

### Better understanding $\rightarrow$ better forecasts $\rightarrow$ more time to prepare for space weather storms



5/16



### from different models



## Some examples of predicted kinematic profiles





Schrijver+, ApJ, 674, 586 (2008)

How SunCET? Technical challenge and solution Lab demo CubeSat

# SUNCET?



# How SunCET handles 10<sup>4</sup>:1 disk:off-disk photons

A novel, simultaneous high dynamic range (SHDR) detector + algorithm





# Lab demo of the SHDR algorithm

It works!





Mason+, ApJ, 924, 63 (2022)





### Faint CME (worst case)



### Bright CME (good case)



summary - why - how - punch

10/16



Provides wide field of view, and can be made *tiny* 











SUNCET A natural pairing... The SunCET PUNCH synergies.





### Fields of view

## WFI





## **17.4** $R_{\odot}$ – **180** $R_{\odot}$

@SunCETcubesat

## NFI



## $5.4 - 32 R_{\odot}$

## $\pm 5.34 \text{ R}_{\odot} \times \pm 4 \text{ R}_{\odot}$





Cadence of Observations

|               | SunCET                                              | NFI                                    | WFI                                               |
|---------------|-----------------------------------------------------|----------------------------------------|---------------------------------------------------|
| Exposure Time | 0.035 seconds (solar disk)<br>15 seconds (off disk) | 3x 13 seconds                          | 45 secor                                          |
| Cadence       | 1 minute (nominal)<br>15 seconds (max)              | 8 minutes (nominal)<br>4 minutes (max) | 32 minutes (full coverage<br>4 minutes (per 30° r |

# Prime mission lasts for 8 months, likely July 2025 – March 2026.

@SunCETcubesat

(we will extend as much as possible)





## SunCET mission SunCET can help PUNCH complete the picture of the corona.



We will release data on the SunCET website in levels 1 and 3 as FITS, NetCDF, and Zarr.

What data products do you want to see?







# Great new mirror coatings

## Low scatter, 170-200 Å



summary - why - how - punch





# Aligning the telescope

## In the same clean room as Europa Clipper telescopes



@SunCETcubesat



# Characterizing point spread function

## i.e., the limiting factor for our spatial resolution (results: right in line with expected performance)



@SunCETcubesat





Summary recap

- 6U CubeSat
- 4 kg, 20x10x15 cm
  instrument
- Simple, RC Telescope
- 2025 launch
- Also looking to fly instrument in constellations off Sun-Earth line











NUM RADIO INTERPERCIMETER SPACE EXPERIMENT

1000