

The evolution of an SEP event in the inner heliosphere *Gabriel D. Muro*¹, Christina Cohen¹, Richard Leske¹, Richard Mewaldt¹, Zigong Xu¹ <u>&</u> *the Parker Solar Probe team*

¹California Institute of Technology

gmuro@caltech.edu

Spacecraft configuration

Pre-storm connection

2023-07-17 22:30:00 (UTC)

	ST-A	PSP	ACE
Carrington longitude [°]	269.5	288.7	271.9
Carrington latitude [°]	4.4	3.2	4.5
Heliocent. distance [AU]	0.96	0.65	1.01
Longitud. separation to Earth longitude [°]	-2.5	16.7	-0.1
Latitud. separation to Earth latitude [°]	-0.1	-1.4	-0.0
Solar wind speed [km/s]	531	343	535
Magnetic footpoint Carrington longitude [°]	314.3	335.6	318.7

Muro PUNCH-5 gmuro@caltech.edu

2023-07-17 22:30:00 (UTC)

Post-storm connection

	ST-A	PSP	ACE
	252.0	270.9	254.3
	4.6	3.2	4.7
	0.96	0.66	1.01
Earth longitude [°]	-2.4	16.5	-0.1
rth latitude [°]	-0.1	-1.4	-0.0
	390	510	426
ington longitude [°]	313.0	303.1	313.0

PFSS model connectivity to AR 13363

GOES 16 X-ray flux

GOES 18 SUVI observations

GOES-SUVI_G18_094 2023-07-17T20:00:24 - 33

1.0161 AU

4.54°, 0.00° expo: 1.00 sec GOES-SUVI_G18_171 2023-07-17T20:02:54

1.0161 AU

l.

4.54°, 0.00° expo: 0.99 sec GOES-SUVI_G18_284 2023-07-17T20:03:24

GOES-SUVI G18 131 2023-07-17T20:01:34

1.0161 AU

4.54°, 0.00° expo: 0.99 sec

GOES-SUVI G18 195 2023-07-17T20:00:04

1.0161 AU

4.54°, 0.00° expo: 1.00 sec

GOES-SUVI_G18_304 2023-07-17T20:01:24

AIA DEM temperature map

RED: 1.0 MK GRN: 2.0 MK

Combine 3 consecutive binned images of 1024x1024 data in all 6 channels

Result is 6-min average temperature

Muro PUNCH-5 gmuro@caltech.edu

Peak temperatures at prominence reach 9+ MK!

1.0161 AU

4.55°, 273.48° Carrington: 2273

CME propagation

STEREO EUVI195/COR1/COR2

Muro PUNCH-5 gmuro@caltech.edu

Parker Solar Probe WISPR

PSP measurements

RFS high

RFS low

B (RTN)

H⁺ EPI-Hi HET

H⁺ EPI-Hi LET

H⁺ EPI-Lo

ISOIS HET-A proton velocity dispersion estimate

PSP radial distance	0.647 AU
SEP path length	0.762 AU
SEP start time	17-07-2023 @ 23:5
Proton peak speed	31664 kms ⁻¹

PSP/LET

ACE/SIS

PSP/LET_A Ox

201.0 DOY 2023

201.5

202.0

202.5

0.5 ¥

203.0

98.7

69.7 49.3 34.8 24.6 17.4 12.3 8.72 6.16 4.36 3.08 2.18 1.54 1.09

199.0

199.5

200.0

200.5

Enervy (MeV)

13.5 11.0

9.00 7.00

5.50 4.75

4.25 3.80 3.40

2.95 2.45

2.00

13.5

11.0 9.00

7.00

5.50

4.75 4.25

3.80

3.40 2.95

2.45

2.00

30.0

24.0

18.0

13.5

11.0

9.00

7.00

5.50

4.75

4.25

3.80

3.40

bo

Enervy (MeV)

Enervy (MeV)

Muro PUNCH-5 gmuro@caltech.edu

STEREO/LET

10

ISOIS ion LET (~1 to 20 MeV) anisotropies

Muro PUNCH-5 gmuro@caltech.edu

He Epi-Hi LET A

He Epi-Hi LET B

Radially adjusting the fluence spectra

Estimating ionic charge dependence via decay profile (Working on it!)

Thanks!

Conclusions

- Magnetic connection was ideal for all spacecraft and this flare-CME-SEP storm event provides a unique \bullet opportunity to analyze ion dependent acceleration.
- The failed prominence eruption as the SEP seed particle source depends can be revealed via ionic charge-to- \bullet mass ratio
- A possible explanation for the lower than expected fluences measured at ~1.0 AU can be inferred by the large anisotropy measured at PSP combined with Type III radio bursts from the extended flare, which has the appearance of an impulsive injection and could be driving suprathermal pick-up ions early on during the rise to \bullet peak ion acceleration.
- The fluence spectral intensities for each ion species should vary by 1/rⁿ during this early acceleration phase close to the Sun, but as the SEP event weakens towards isotropy during the decay phase the position angle scattering should increase and reduce the fluence ratios at ever increasing distances. \bullet

Future work

- We plan to compare the charge-to-mass ion ratio at each spacecraft as well as derive a rough ionic charge state \bullet estimate via SEP event decay slope.
- Comparing anisotropy histories for all spacecraft will be essential when discussing the differing 1/rⁿ fluence dependency at each location, because the magnetic connection to the flare are nearly optimal for all spacecraft. \bullet

B-field measurements (zoomed in)

Radio measurements (zoomed in)

Ion ratios in PSP-LET and STA-LET

Lighter ions He/H+ 1.000 1.000 He to H+ PSP-LET He to H+ STA-LET
0.100 0.100 0.010 0.010 0.001 ∟ 1 0.001 L 10 100 MeV/nucleon

Muro PUNCH-5 gmuro@caltech.edu

Heavier ions Fe/O

Ion ratios in PSP-LET and STA-LET

Lighter ions He/H+ 1.000 1.000 He to H+ PSP-LET He to H+ STA-LET
0.100 0.100 0.010 0.010 0.001 ∟ 1 0.001 L 10 100 MeV/nucleon

Muro PUNCH-5 gmuro@caltech.edu

Heavier ions Fe/O

