Polarimeter to Unify the Corona and Heliosphere

PUNCH 6 Science Meeting February 25-26, 2025 Cal Poly

WFI Instrument Status

Glenn Laurent WFI Instrument Lead

WFI Overview

- WFI/NFI provide first complete, photometric, high resolution views of corona/solar wind transition.
 - WFI 5-45°, NFI 1.5-8°
- WFI provides first wide-field polarimetric solar wind images.
- Design based on STEREO/HI, SoloHI heliospheric imagers.
- 3 observatories in 620 km polar orbit (95.95 min)
- Rotating trefoil pattern orbit separated by 120° ±30°.
 - Continuous observations 4 min observing cadence (2x per roll)
 - Full coverage in 32 min
 - 30° roll every 8 min

PUNCH 6 Science Meeting: WFI Status: G. Laurent

Resource	СВЕ	Cont.	Total		
Mass (kg)	16.88	7.05%	18.07		
Power (W)	15.49	12.00%	17.35		
Length (mm)	889	-	889		
Width (mm)	438	-	438		
Height (mm)	149	-	149		
Data Rate (GB/day)	1.41	34.20%			

* LV update provides additional margin

WFI Instrument

PUNCH 6 Science Meeting: WFI Status: G. Laurent

PUDGH

Integrated Instrument (WFI-3)

WFI Block Diagram

PUDGH

WFI Level 2 Driving Requirements

• All Requirements validated

ID	Requirement	Value	Performance	Status
1057	Passband	Width: 300+/-100nm Center: 550+/-75nm	450-750nm	PASS
1063	Field of View (FOV)	20 R $_{\odot}$ – 160 R $_{\odot}$	17.4 R $_{\odot}$ – 180R $_{\odot}$	PASS
1064	Instantaneous FOV	40 deg [°] square truncated by 50 deg [°] circle	40.2° FOV Baffle, >50° OLA FOV	PASS
1068	Angular Resolution	4 arcmin	2.4 arcmin	PASS
1071	Norm. Sensitivity	7E-17 B _☉	3.7E-17 B $_{\odot}$	PASS
1076	Polarization	3 angles	-60°, 0°, +60°	PASS

PUNCH 6 Science Meeting: WFI Status: G. Laurent

IDGH

WFI Conops

PUNA

			PUNCH Observing Sequence Schedule						
	 Conops common to WFI & NFI 	Time (s)	Length + margin	NFI Action	WFI Action				
	Two sate of polarization coguanase por 9 min	0	47+4	Roll & set PFW to -60 $^{\circ}$	Roll & set PFW to -60°				
	• Two sets of polarization sequences per o min	51	48+1(*)	Expose 3x13s at -60°	Expose 45s at -60°				
	roll cadence	98	15+5	Set PFW to 0° & settle	Set PFW to 0° & settle				
	 20 seconds PFW rotation time 	118	48+1(*)	Expose 3x13s at 0°	Expose 45s at 0°				
		165	15+5	Set PFW to 60° & settle	Set PFW to 60° & settle				
		185	48+1(*)	Expose 3x13s at 60°	Expose 45s at 60°				
		232	15+5	Set PFW to CL & settle	Set PFW to CL & settle				
		252	22+1(*)	Expose 3x5s at CL	Expose 19s at CL				
		273	15+5	Set PFW to -60° & settle	Set PFW to -60° & settle				
	◄ Roll Cadence: 480s ±2s (8 min.)	293	48+1(*)	Expose $3x13s$ at -60°	Expose 45s at -60°				
		340	15+5	Sep PFW to 0° & settle	Sep PFW to 0° & settle				
WFI	-60° -0° +60° Clear -60° -0° +60°	360	48+1(*)	Expose 3x13s at 0°	Expose 45s at 0°				
NFI	-60° -0° +60° Clear -60° -0° +60°	407	15+5	Set PFW to 60° & settle	Set PFW to 60° & settle				
(0 100 200 300 400	427	48+1(*)	Expose 3x13s at 60°	Expose 45s at 60°				
1	Elapsed Time (sec)	- 474	1 to 11	Sync for next roll	Sync for next roll				
ļ	Legence Maneuver Exposure Wheel Motion Margin	(*) 2-	second ove	rlap with following event					

WFI Instrument Status

Milestone	WFI-1	WFI-2	WFI-3		
Camera Focus	PASS	PASS	PASS		
Vibe	PASS	PASS	PASS		
TVAC / TBAL	PASS	PASS	PASS		
SCOTCH	PASS	N/A (Descoped)	N/A (Descoped)		
Optical Performance	PASS	PASS	PASS		
PSR / EIDP	Complete (10/24/2023)	Complete (3/8/2024)	Complete (4/12/2024)		
Delivery	Complete (1/22/2023)	Complete (3/22/2024)	Complete 5/14/2024		

PUNCH 6 Science Meeting: WFI Status: G. Laurent

PUDGI

WFI Requirements Verification

WFI Requirements Verification Summary Table

Level	Total Requirements	Passed	Deferred	Waiver	Open	Percent Verified Items
WFI Level 3 / 4	113	110	1	2	0	100%
WFI Level 5	20	20	0	0	0	100%
Total	133	130	1	2	0	

- Two Waivers (Metering Bracket Reflectivity, Solar Shield Position) approved -- Negligible performance impact
- No Outstanding MIUL Open Items
- No MUAs

IDdi

WFI Structural Verification (Vibration Testing)

WFI-3 Vibration Testing Completed

WFI Thermal Verification (TVAC / TBAL)

WFI-FM003 TVAC / TBAL Complete (meeting ERD requirements)

WFI Optical Focus Testing

WFI FM1 5x5_231011

WFI-1 Optical Performance testing (all filters) Meets requirements

IDGI

Point Source Regularization

PSF is well understood and Software Pipeline is ready to create Mosaics

PUNCH 6 Science Meeting: WFI Status: G. Laurent

Incl

TVAC / SOC Calibration -- WFI

Photon Transfer Curve

SOC De-streaking Analysis Validated on Cold Operational Data

PUNCH 6 Science Meeting: WFI Status: G. Laurent

IDGI

WFI Instrument/Observatory Focus Repeatability

Radial distance [deg]

PUNCH 6 Science Meeting: WFI Status: G. Laurent

TIDAT

WFI Optical Vignetting Testing

WFI-1 Flat Fields meet Vignetting Requirements

IIDGH

WFI Observatory Vignetting Model

WFI Vignetting Model Ready for PUNCH Software Pipleline

Inch

WFI Post-Vibe LED Testing

WFI-3 LED Testing completed (Meets science requirements)

PLIDGH

WFI Post-Vibe LED/PFW Testing

WFI-3 LED Testing completed (Verifies minimal CCD Obscured pixels)

PUNCH 6 Science Meeting: WFI Status: G. Laurent

Indi

WFI-3 Polarizer Testing completed (Verifies Polarizer Angles)

NFI/WFI Observatory TVAC Bias/Read Noise Trending

- Observatory TVAC testing examined Bias & Read Noise
- Cold CCD, S/C Systems Operating (Radio link, reaction wheel, torque rod active)
- Bias values are consistent with nominal CCD temperature fluctuations (< +/- 0.5 DN)
- Read Noise trends are small (< +/- 0.02 DN)
- Both HotOp & ColdOp show similar trends

Bias & Read Noise Stable through end-to-end Observatory Testing (Verifies CCD EMI/EMC Performance)

WFI01 NFI **WFI-1 WFI-2** Hot-on m WFI01 WFI-3

NFI/WFI Observatory TVAC Dark Trending

- Observatory TVAC testing examined
 Dark current / Noise
- Cold CCD, S/C Systems Operating (Radio link, reaction wheel, torque rod active)
- Dark Current of ~0.7-1.3 e-/pix/s meets requirement of <5 e-/pix/s.
- Dark Current fluctuations are consistent with nominal CEB temperature fluctuations (~ +/- 0.1 e-/pix/s)
- Dark Current rms trends are small (< +/-0.01 e-/pix/s)

Dark Current Stable through end-to-end Observatory Testing (Verifies CCD EMI/EMC Performance)

WFI Delivery to Observatory

- All WFIs Successfully Delivered to Observatory I&T
 - WFI-1 (1/22/2023)
 - WFI-2 (3/22/2023)
 - WFI-3 (5/14/2023)
- Functional Testing
- Comprehensive Performance Testing (CPT)
 - Bias/Read/Dark Noise
 - LED / Flat Field
 - PFW
 - Door Testing
 - Optical Focus Testing

PUNCH I&T @ VSFB

- Vandenberg SFB I&T
 - Delivery & Inspection

PUNCH I&T @ VSFB

- Vandenberg SFB I&T
- Functional Testing
- Comprehensive Performance Testing (CPT)
 - Bias/Read Noise
 - LED / Flat Field
 - PFW
 - Door Testing

PUNCH I&T @ VSFB

- Vandenberg SFB I&T
- Functional Testing
- Comprehensive Performance Testing (CPT)
 - Bias/Read Noise
 - LED / Flat Field
 - PFW
 - Door Testing

• WFI-2 Solar Array Deployment

Commissioning / Calibration

- On-orbit calibration of WFI & NFI Instruments individually
- On-orbit commissioning/validation of the "single virtual observatory" cross-instrument calibration and SOC testing

• Commissioning phases:

Spacecraft Commissioning:L to L+30days(includes WFI/NFI functional checks)Instrument Commissioning:L+30days to L+60days(instrument calibration)Constellation Commissioning:L+60days to L+90days(validate "virtual" instrument)

- Instrument commissioning plan well defined
 - Identifies ADCS/Camera/PFW Commanding, Imaging types, Required Polarizers

Closed-Door Activities

- Thermal Verification (PRTs, Heaters, Heater Control)
- Camera Verification (Bias, Darks, LED imaging, Linearity)
 - Continue against trending of noise from TVAC
- PFW Verification (motion, resolver function)

LED Composite Flat Field: similar for both NFI and WFI since the LEDS are integrated into the camera housing

Open Door Activities

- Starfield Imaging validates several instrument parameters
 - WFI Baffle alignment to S/C
 - Offset measured between predicted & measured pointing
 - Update boresight pointing in ADCS
 - PSF performance
 - Analyze stars in field of view, compare to predictions from test data and update PSF mapping for each instrument
 - Platescale, FOV, Distortion
 - Perform astrometry fit to determine optical parameters
 - Done previously on EM WFI night sky observations
 - Photometric performance
 - From starfield, determine CCD response / vignetting function as function of position.
 - Repeat imaging over a minimum of two weeks to ensure stars have drifted over the field of view.

EM WFI Starfield astrometry & distortion

31

Open Door Activities

- Multiple images of the star field provide
 - Baffle solar attenuation performance
 - Nominal pointing
 - Starfield photometry provides attenuation performance
 - Optimize WFI performance by adjusting WFI pitch angle
 - Polarizer efficiency

That

- Image polarized source at each PFW filter position
- Compare stellar photometry over an orbit, (including observatory rolls) to measure PFW polarizer efficiencies

WFI Vignetting Functions

Performing full exposure sequence in preparation for Phase E

Optimize exposure times / summing

Figure shows Solar Orbiter Metis polarization calibration. PUNCH will preform a full roll during every orbit.

Polarizer	Axis	Mapp	ing (D	egree	es)										
x,y in mm	-21	-18	-15	-12	-9	-6	-3	0	3	6	9	12	15	18	21
21								0.11							
18					-0.01	-0.01	0.21	0.09	0.03	0.06	0.03				
15				0.60	-0.06	0.03	0.00	0.02	-0.01	0.07	-0.01	0.04			
12			0.01	-0.02	0.00	-0.01	0.06	0.09	0.05	0.05	0.01	-0.01	0.03	÷	
9		0.00	0.00	0.06	-0.03	0.02	0.05	0.01	-0.01	-0.02	-0.02	0.02	-0.01	0.02	
6		0.01	-0.01	-0.03	0.04	0.04	0.03	0.07	0.04	0.02	0.00	-0.01	-0.01	0.05	
3		-0.03	0.06	0.01	-0.04	0.03	0.01	0.03	0.07	-0.02	0.05	-0.04	-0.02	0.05	
0	0.00	0.09	0.00	0.02	0.03	0.01	0.13	0.00	0.00	-0.02	0.01	0.00	-0.08	-0.01	0.05
-3		-0.04	0.01	0.06	-0.05	0.05	0.02	-0.01	0.02	0.00	-0.01	0.01	-0.03	0.00	1
-6		0.01	-0.01	-0.03	0.04	0.04	0.03	0.07	0.04	0.02	0.00	-0.01	-0.01	0.05	0
-9		0.06	0.02	0.01	1.61	-0.03	0.36	0.01	0.06	-0.01	-0.22	0.10	0.33	-0.02	
-12			0.03	-0.26	-0.40	0.25	0.02	0.09	-0.05	-0.05	0.04	-0.01	0.04	6	
-15				0.08	0.02	-0.02	-0.04	0.02	-0.04	-0.02	0.05	-0.18		Ŷ	
-18					0.00	-0.01	-0.01	0.05	0.00	0.03	-0.02	0.21			
-21								0.21						1	

Polarizer uniformity

Single Virtual Observatory Commissioning

- Each instrument is *individually* calibrated for
 - PSF
 - FOV/plate scale/distortion
 - Photometric performance (Occulter performance / vignetting function)
 - Polarimetry
- Constellation calibration ensures *relative* calibration across the cameras, by directly comparing simultaneous measurements in overlapping fields of view.
- The four principal calibration quantities are refined to produce higher quality relative calibration to ensure the cameras function as a single "virtual instrument" after SOC processing.

Single Virtual Observatory Commissioning

- All constellation calibrations are performed at the SOC level
- Uses same science data as used to calibrate the individual instruments

Single Virtual Observatory Commissioning

- Cross check and verify:
 - PSF correction
 - Tune L1 PSF calibration to ensure instruments are matched.
 - Photometric performance (instrument photometry and vignetting)
 - Verify standalone calibration curves
 - Adjust calibration to improve relative precision
 - Distortion calibration
 - Adjust derived instrument calibration functions to achieve required co-alignment across each field
 - Polarimetric calibration
 - Verify that known catalog high-polarization stars and solar wind features are measured the same, independent of source camera
- All FOVs overlap, providing cross-calibration "patches" between instruments for each cross-check

