PUNCH, Shocks, and Radio Emissions

Iver Cairns

University of Sydney & CUAVA (ARC Training Centre for CubeSats, UAVs, and Their Applications))

Outline

- 1. Context cartoon
- 2. Outline of the theory: shocks + plasma emission
- 3. Type IIs
- 4. Gyro-synchrotron emission from CMEs
- 5. CIRs
- 6. Earth's foreshock radiation
- 7. PUNCH connections (including to Type IIIs)
- 8. Conclusions

1. Cartoon view: Type II bursts (coronal & interplanetary), Earth's foreshock radiation, type IIIs

[Wild et al., 1963, Melrose, 1982, ... Hoang et al., 1980; Cairns, 1987a,b, 1988, 1994; Burgess et al., 1988; Kasaba et al., Reiner et al., 1998; Knock et al., 2001; Cairns et al., 2003; Kuncic et al., 2002, 2004; Cairns, 2011;]

2. Outline of Theory: shock + "plasma emission"

• Semi-quantitative, analytic, macroscopic theory exists:

3. Type IIs: why blobs, split-band, & multiple lanes, what is connection between coronal & IP type IIs ...?

→ special conditions for observable emission ...

[Lobzin et al., 2008]

[Cane & Erickson, 2005]

4. Gyrosynchrotron emission from CMEs (e.g., Mondal et al., 2020)

5. Hoang et al.'s CIR Emissions

[Hoang et al., 2000, Solar Wind 6.]

- Emission at $f_{\rm p}$ and 2 $f_{\rm p}$ of upstream plasma & apparently at $f_{\rm p}$ of downstream plasma.
- But no known source of Langmuir waves downstream
- Can PUNCH help?

6. Earth's Foreshock Source Images (L1 Observer, <u>B</u> in X-Y plane, θ_{bu} = 60°)

[Cairns & Oppel, 2025, sub.]

Nonlinear Fundamental Emission

- Source elongated \perp **B** and \mathbf{v}_{sw}
- No emission from locus of tangent points since no electrons leave there

Viewing effects for different observers (\underline{B} in X-Y plane, $\theta_{bu} = 60^{\circ}$)

[Cairns & Oppel, 2025, sub.]

7. PUNCH connections to shocks & radio sources

Type II and gyrosynchrotron emissions?

- 3D location & shape, velocity, rippling, & evolution of CME shocks, cores, etc.
- Density measurements (B?)
- Connection to radio sources & CME simulations

CIR radio emissions?

Locate 3D CIRs & compare with radio data and simulations

Type III bursts?

- Remotely measure densities and existence of density channels, compare to radio sources
- Constrain turbulence & radio scattering properties (level, enhanced regions, anisotropy)

Earth's foreshock radiation?

- 3D location, shape, & rippling of Earth's bow shock But PUNCH not likely to see this
- See shock & magnetopause "breathing" as solar wind varies

8. Conclusions

- Multiple unanswered questions for solar system radio emissions and for CME and solar wind properties that PUNCH data can address uniquely.
- Type II and gyrosynchrotron emissions?
 - 3D location & shape, velocity, rippling, & evolution of CME shocks, cores, & structures
 - Density measurements (B?)
 - Connection to radio sources & CME simulations
- CIR radio emissions?
 - Locate 3D CIR & compare with radio data and simulations
- Type III bursts?
 - Remotely measure densities and existence of density channels, comparing to radio data ...
 - Constrain turbulence & radio scattering properties (level, enhanced regions, anisotropy?)
- Earth's foreshock radiation?
 - 3D location and shape of shock
 - shock & magnetopause "breathing" as solar wind varies .. BUT PUNCH unlikely to see this.