

Coronal and Heliospheric Modeling at Predictive Science Inc.

Data Products, Tools, and Capabilities

Cooper Downs and the PSI Team: Jon A. Linker, Ronald M. Caplan, Erika Palmerio, Andres Reyes, Ryder Davidson, Peter Riley, Tibor Török, Michal Ben-Nun, Emily I. Mason, Roberto Lionello, Viacheslav S. Titov, James Turtle

HMI CR2282 Thermo 2 Polarization Brightness (PUNCH | WFI)

Synergistic Models Panel Discussion
PUNCH 6 Meeting, Feb 25-26, 2025, San Louis Obispo, CA

Cooper Downs

MAS: A 3D Global Thermodynamic MHD model for the CORona and inner HELiosphere.

- With over 30 years of development, the Magnetohydrodynamic Algorithm outside a Sphere (MAS) code is a flexible mode for global coronal and heliospheric modeling.
- By leveraging magnetic field observations and low-coronal energy transport terms, MAS can be used to study the corona and inner heliosphere at a given time of interest.

MHDWeb: A Database of Coronal and Heliospheric Models Spanning Multiple Solar Cycles

- In an effort to make our models more broadly useful to the community, we routinely run MAS/CORHEL MHD models for every Carrington rotation.
- Our current database spans the SOHO and SDO eras (1996-Present) and includes over a thousand distinct coronal and heliospheric calculations.
- For every permutation of model type (coronal, helio, polytropic, thermodynamic) we have built web interfaces for browsing and interacting with model results.
- These models can provide useful context for observational data analysis as well as for forward modeling synthetic observations.
- We are currently revamping our MHDWeb pages from the ground up for multi-spacecraft remote sensing and in situ data analysis, including PUNCH!

CORHEL-CME: An interface for modeling solar eruptions from 1Rs to 1AU.

- Bulding MHD models of observed CMEs is traditionally a very involved task, requiring one to model the energized pre-eruptive state, onset, and ensuing evolution.
- Over the years we have developed a host of flux-rope models and gained experience with insertion and eruption techinques to facilitate this process in MAS.
- We have distilled these ideas into a high-level interface for the community, CORHEL-CME, which allows one to easily buld eruptive configurations for any case.
- The interface is LIVE at the NASA Community Coordinated Modeling Center (CCMC), with Runs on Request launched on NASA AWS GPU Cloud Infrastructure.

New Frontier: A Data Driven Time-Evolving Global Corona and Heliosphere

- · We recently developed the capability to drive MAS with maps from data-assimilative surface flux-transport models (e.g. HipFT).
- This allows one to capture the dynamic response of the corona and heliosphere to surface evolution and helicity injection.
- As a demonstration, we ran a continuous "Live Prediction" model for the April 8th 2024 eclipse, spanning 32.7 days of evolution.
- A variety of time-dependent dynamics are captured in the driven model that are not present in steady state calculations.

3/27 00:00

3/27 02:00

Coronal Dynamics

3/25-19:00

Heliospheric Dynamics

