Water mass transformation budgets in finite‐volume generalized vertical coordinate ocean models

Drake, H. F., Bailey, S., Dussin, R., Griffies, S. M., Krasting, J., et al. (2025). Water mass transformation budgets in finite‐volume generalized vertical coordinate ocean models. Journal of Advances in Modeling Earth Systems, doi:https://doi.org/10.1029/2024MS004383

Title Water mass transformation budgets in finite‐volume generalized vertical coordinate ocean models
Genre Article
Author(s) H. F. Drake, S. Bailey, Raphael Dussin, S. M. Griffies, J. Krasting, G. MacGilchrist, G. Stanley, J. Tesdal, J. D. Zika
Abstract Water Mass Transformation (WMT) theory provides conceptual tools that in principle enable innovative analyses of numerical ocean models; in practice, however, these methods can be challenging to implement and interpret, and therefore remain under‐utilized. Our aim is to demonstrate the feasibility of diagnosing all terms in the water mass budget and to exemplify their usefulness for scientific inquiry and model development by quantitatively relating water mass changes, overturning circulations, boundary fluxes, and interior mixing. We begin with a pedagogical derivation of key results of classical WMT theory. We then describe best practices for diagnosing each of the water mass budget terms from the output of Finite‐Volume Generalized Vertical Coordinate (FV‐GVC) ocean models, including the identification of a non‐negligible remainder term as the spurious numerical mixing due to advection scheme discretization errors. We illustrate key aspects of the methodology through the analysis of a polygonal region of the Greater Baltic Sea in a regional demonstration simulation using the Modular Ocean Model v6 (MOM6). We verify the convergence of our WMT diagnostics by brute‐force, comparing time‐averaged (“offline”) diagnostics on various vertical grids to timestep‐averaged (“online”) diagnostics on the native model grid. Finally, we briefly describe a stack of xarray‐enabled Python packages for evaluating WMT budgets in FV‐GVC models (culminating in the new xwmb package), which is intended to be model‐agnostic and available for community use and development.
Publication Title Journal of Advances in Modeling Earth Systems
Publication Date Mar 1, 2025
Publisher's Version of Record https://doi.org/10.1029/2024MS004383
OpenSky Citable URL https://n2t.net/ark:/85065/d7sn0fc4
OpenSky Listing View on OpenSky
CPAESS Affiliations UCP, SPS

< Back